Superparamagnetic core/shell GoldMag nanoparticles: size-, concentration- and time-dependent cellular nanotoxicity on human umbilical vein endothelial cells and the suitable conditions for magnetic resonance imaging
نویسندگان
چکیده
BACKGROUND GoldMag nanoparticles (GMNPs) possess the properties of colloid gold and superparamagnetic iron oxide nanoparticles, which make them useful for delivery, separation and molecular imaging. However, because of the nanometer effect, GMNPs are highly toxic. Thus, the biosafety of GMNPs should be fully studied prior to their use in biomedicine. The main purpose of this study was to evaluate the nanotoxicity of GMNPs on human umbilical vein endothelial cells (HUVECs) and determine a suitable size, concentration and time for magnetic resonance imaging (MRI). RESULTS Transmission electron microscopy showed that GMNPs had a typical shell/core structure, and the shell was confirmed to be gold using energy dispersive spectrometer analysis. The average sizes of the 30 and 50 nm GMNPs were 30.65 ± 3.15 and 49.23 ± 5.01 nm, respectively, and the shell thickness were 6.8 ± 0.65 and 8.5 ± 1.36 nm, respectively. Dynamic light scattering showed that the hydrodynamic diameter of the 30 and 50 nm GMNPs were 33.2 ± 2.68 and 53.12 ± 4.56 nm, respectively. The r 2 relaxivity of the 50 nm GMNPs was 98.65 mM(-1) s(-1), whereas it was 80.18 mM(-1) s(-1) for the 30 nm GMNPs. The proliferation, cytoskeleton, migration, tube formation, apoptosis and ROS generation of labeled HUVECs depended on the size and concentration of GMNPs and the time of exposure. Because of the higher labeling rate, the 50 nm GMNPs exhibited a significant increase in nanotoxicity compared with the 30 nm GMNPs at the same concentration and time. At no more than 25 μg/mL and 12 hours, the 50 nm GMNPs exhibited no significant nanotoxicity in HUVECs, whereas no toxicity was observed at 50 μg/mL and 24 hours for the 30 nm GMNPs. CONCLUSIONS These results demonstrated that the nanotoxicity of GMNPs in HUVECs depended on size, concentration and time. Exposure to larger GMNPs with a higher concentration for a longer period of time resulted in a higher labeling rate and ROS level for HUVECs. Coupled with r 2 relaxivity, it was suggested that the 50 nm GMNPs are more suitable for HUVEC labeling and MRI, and the suitable concentration and time were 25 μg/mL and 12 hours.
منابع مشابه
VCAM-1-targeted core/shell nanoparticles for selective adhesion and delivery to endothelial cells with lipopolysaccharide-induced inflammation under shear flow and cellular magnetic resonance imaging in vitro
Multifunctional nanomaterials with unique magnetic and luminescent properties have broad potential in biological applications. Because of the overexpression of vascular cell adhesion molecule-1 (VCAM-1) receptors in inflammatory endothelial cells as compared with normal endothelial cells, an anti-VCAM-1 monoclonal antibody can be used as a targeting ligand. Herein we describe the development of...
متن کاملThe Assessment of Toxicity Characteristics of Cellular Uptake of Paramagnetic Nanoparticles as a New Magnetic Resonance Imaging Contrast Agent
Nanoparticles are unique that enable many promising medical and technological applications intheir physical, and chemical properties. It is widely accepted that nanoparticles should bethoroughly tested for health nanotoxicity, but a moderate risk analysis is currently prevented by arevealing absence of mechanistic knowledge of nanoparticle toxicity. The purpose of this study<b...
متن کاملSize Reproducibility of Gadolinium Oxide Based Nanomagnetic Particles for Cellular Magnetic Resonance Imaging: Effects of Functionalization, Chemisorption and Reaction Conditions
We developed biofunctionalized nanoparticles with magnetic properties by immobalizing diethyle-neglycol (DEG) on Gd2O3, and PEGilation of small particulate gadolinium oxide (SPGO) with two me-thoxy-polyethyleneglycol-silane (mPEG-Silane 550 and 2000 Da) using a new supervised polyol route, described recently. In conjunction to the previous study to achieve a high quality synthesis and increase ...
متن کاملThe Assessment of Toxicity Characteristics of Cellular Uptake of Paramagnetic Nanoparticles as a New Magnetic Resonance Imaging Contrast Agent
Nanoparticles are unique that enable many promising medical and technological applications intheir physical, and chemical properties. It is widely accepted that nanoparticles should bethoroughly tested for health nanotoxicity, but a moderate risk analysis is currently prevented by arevealing absence of mechanistic knowledge of nanoparticle toxicity. The purpose of this study<b...
متن کاملSize Reproducibility of Gadolinium Oxide Based Nanomagnetic Particles for Cellular Magnetic Resonance Imaging: Effects of Functionalization, Chemisorption and Reaction Conditions
We developed biofunctionalized nanoparticles with magnetic properties by immobalizing diethyle-neglycol (DEG) on Gd2O3, and PEGilation of small particulate gadolinium oxide (SPGO) with two me-thoxy-polyethyleneglycol-silane (mPEG-Silane 550 and 2000 Da) using a new supervised polyol route, described recently. In conjunction to the previous study to achieve a high quality synthesis and increase ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2015